
Confidential and proprietary.
This document may be subject to change without notice. The information 

shall remain the exclusive property of s.m.s, smart microwave sensors GmbH.

IN COMPARISON TO ROS 1

KEY FEATURES OF ROS 2 

Based on Data Distribution Service (DDS) 

Much faster performance 

Suitable for real-time distributed embedded systems 

Implemented in C++ (ROS 1 is based on python) 

More resourceful and faster 

Easier portability between versions of ROS and Ubuntu 

Lower latency and smaller memory footprint



Confidential and proprietary.
This document may be subject to change without notice. The information 

shall remain the exclusive property of s.m.s, smart microwave sensors GmbH.

ETHERNET SUPPORT OF ROS 2

Vehicles including multiple different sensing technologies like cameras, radars, and infotainment systems require tremendous bandwidth 

Our solution: Ethernet-based ROS 2 driver interfacing with smartmicro sensors

Open-source on GitHub 

More convenient and user-friendly 

Any developer or user can easily get it 

Possibility to requests and reports using GitHub issues 

Active support for the driver on GitHub

Licensed under MIT, available for commercial use



Confidential and proprietary.
This document may be subject to change without notice. The information 

shall remain the exclusive property of s.m.s, smart microwave sensors GmbH.

ROS 2 DRIVER HIGHLIGHTS

Bundled with Smart Access

Data stream for UMRR-11 Type 132 Automotive and UMRR-96 Type 153

Multi-sensor support connecting up to 10 smartmicro sensors at a time with one ROS 2 node

Point cloud data and visualization of up to 10 sensors at once

ROS 2 driver node configurable using ROS 2 parameters (e.g.: setting IP address, ID, and interface)

Integration tests based on official ROS 2 testing methods and gtest

Possibility to replay pre-recorded PCAP data using a multi-docker setup

Docker support for building and testing 

Docker providing an alternate environment without the need to have ROS 2 on the system

Driver has a CI/CD pipeline using GitHub actions


